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Abstract: - The problem of optimal control system design for nonlinear control systems (plants) has been 
considered in many works. But the majority of the proposed design methods are focused on linear models 
which are received by the usual linearization. Therefore the real control systems are quasi optimal practically. 
Known methods of the optimal systems design on the basis of nonlinear models are very difficultly for practical 
use. Therefore new design methods of the nonlinear optimal control systems are claimed. This paper presents 
the application of a Jordan controlled form to analytical design of the optimal control system for nonlinear 
plants, equations of which are transformed to this form. For this reason the definition of Jordan controlled form 
and some features of the transformation to this form of the nonlinear systems equations are considered. The 
suggested method of the optimal control systems design includes two steps. At the first step a linearization 
control is designed on the base of the known stabilizing control and the nonlinear transformation of the plant 
state variables. In new variables the equations of the close system with the linearization control is linear. It 
gives possibility to apply the known method LQ to these linear equations on the second step. The resulting 
nonlinear control system is optimal in the sense of a minimum of nonlinear quadratic criteria. Coefficients 
values of the criteria can be chosen in accordance with the desired transients of the nonlinear optimal control 
system. The design problem has a solution if a plant is controllable. The optimal control is a feedback on the 
state variables of the plant. Efficiency of the stabilizing control and the suggested design method of nonlinear 
optimal control systems are shown on the examples of designing and simulation of nonlinear control systems. 
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1 Introduction 
The optimal control systems widely use in practice, 
including for control of the nonlinear plants. 
Application of the traditional linearization method 
allows receiving the linear plant equations of the 
first approximation [1–5]. In this case the control 
systems are designed as optimal in sense of the 
minimum of quadratic criteria [1, 3, 4]. However the 

equations of the first approximation are not exact, 
therefore the found control is not optimal actually. 
Control systems include usually the given plant and 
a projected controller [5, 6, p. 270]. The method of a 
nonlinear transformation of the plant equations to 
the some simple forms is more effective and it is 
widely applied at the solution of the control design 
problem for a nonlinear systems. This technique 
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allows, first, to simplify the solution of this problem 
and, secondly, to make it analytical.  

In nonlinear cases the plant equations are 
transformed to the normal canonical control form [2, 
7], quasi-linear form [8, 9], triangular form [10, 11], 
Lukyanov-Utkin regular form [12], a Jordan 
controlled form [13 – 15] and others forms. If 
equations of the plant are represented in a triangular 
form, the backstepping method to design of an 
adaptive control system is applied very easily [11]. 
The Lukyanov-Utkin regular form of equations 
allows decomposing complex design problem on 
several tasks of the smaller dimension [12]. Jordan 
controlled form of the systems equations gives 
possibility to reject the external disturbances [15]. 

But in practice the optimal controls is used more 
often [1 – 5]. In a nonlinear case the optimal control 
is designed usually on the basis of the Pontryagin 
Minimum Principle or the Hamilton–Jacobi–
Bellman equation [16]. But designing of the optimal 
control by these methods is very complex, since in 
nonlinear cases these methods demand the solution 
of the equations in partial derivatives.  

The main difficulty of the transformation method 
is to find suitable transformation of the nonlinear 
systems equations. Constructing methods of such 
transformations are known in the theoretical plan, 
but often they are very complex. Therefore the 
finding of suitable transformation frequently is more 
difficult than the subsequent designing of the 
control system [2, 7, 12]. 

In this article the features of the design problem 
of the optimal control systems on the basis of the 
Jordan controlled form (JCF) is considered. The 
possibility of the optimal control system design by 
this approach is caused by existence of a special 
linearization control, which transforms the nonlinear 
equations in JCF to linear equations with constant 
parameters. The analysis shows: the equations of 
many real nonlinear plants have JCF or may be 
represented in this form by simple change of the 
state variables designations [8]. Representation of 
the plant equations in the JCF allows ensuring the 
stability of the system equilibrium [13, 14], the full 
compensation of the influence of the bounded 
external disturbances [15], the required transient 
time and also the desired character of transients. 

This article is organized as follows. The Jordan 
controlled form of the equations plant is given in the 
section 2. The statement of the optimal control 
design problem with an uncertain criterion is 
presented in the section 3. The solution of this 
problem is received here at the assumption, that the 
equations of a controlled system are submitted in 
JCF. Therefore in section 4 the transformation of the 

nonlinear systems equations to JCF is considered.  
The design method of a linearization control 

on base of the stabilizing control is considered 
in the section 5. For clearness the design 
procedure of the stabilizing control is shown 
here on example of the concrete nonlinear plant. 
Linearizing property of this control is shown 
here also. The problem of the nonlinear optimal 
control systems design on base of the Jordan 
controlled form of the systems equations is 
solved in the section 6. The final section 
includes the examples of the optimal control 
system design. Possibilities of the optimal and 
stabilizing control are compared. The proof of 
the theorem about conditions of transformation 
possibility to the JCF of the nonlinear 
differential equations of the second order is 
resulted in the appendix. 
 
 

2 JCF of Systems Equations  
Suppose some system (plant) with a single control is 
described by the equation 

0( ) nx f x e u= +ɺ ,                           (1) 

where nx R∈  is the state vector; 

1 2 2 3 1( ) [ ( ) ( ) ( ) ( )]Tn n n nf x f x f x f x f x−= …  is the 

vector-function; 1( )i if x +  is the scalar, continuous 

function which is differentiable n i−  time on all its 

arguments; 1[ ]Ti ix x x= …  is the sub vector 

including first i state variables 1, , ix x… ; evidently 

nx x= ; ne  is n-th column of the identity n n× -

matrix; 0 0 ( )u u x=  is the scalar control. 

Let 0( , )x x t u=� � �  is a vector that describes the 

unperturbed motion of the system (1); 0u
�  is the 

appropriate control. Enter the deviations x x x= − �
ɶ  

and 0 0u u u= − � . For clearness the equation of the 

system (1) in deviations are recorded in a scalar 
form: 

1 1( , , )i i ix x x += φɺɶ ɶ ɶ… ,    1, 1i n= − ,           (2) 

1( , , )n n nx x x u= φ +ɺɶ ɶ ɶ… ,                    (3) 

where 1, , nx xɶ ɶ…  are deviations of the variables of 

the system (1): i i ix x x= − �
ɶ , 1,i n= ; 1 1( , , )i ix x +φ =ɶ ɶ…  

1 1 1( ) ( ) ( )i i i i i if x f x x+ + += − =φ�
ɶ , 1, 1i n= −  are the 

nonlinear, differentiable according on all their 

arguments functions;  1( , , ) ( ) ( )n n n nx x f x f xφ = − =�ɶ ɶ…  

( )n x=φ ɶ ; 1[ ]Ti ix x x=ɶ ɶ ɶ… ; ( )u u x= ɶ  is the search 
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control. The variables ixɶ , ni ,1=  are measurable 

and (0) 0iφ = ,  ni ,1= ; nx x=ɶ ɶ  evidently. 

Unlike the triangular or normal canonical control 
forms, the design control problem for nonlinear 
plant (2), (3) has a solution when the following 

conditions for all n
xx R∈Ω ∈ɶɶ  are true: 

1 1

1

( , , )
0i i

i

x x

x

+

+

∂φ
≥ ε ≠

∂

ɶ ɶ…

ɶ
,    1, 1i n= − .       (4) 

Here ε  is any positive constant and xΩ ɶ  is some 

domain of the space nR . This domain should 
include the equilibrium 0x =ɶ . Evidently, the 
inequalities (4) are controllability conditions of the 
plant (1) or (2), (3) [2, 8, 13]. 

Definition. If the equations (2), (3) satisfy 
conditions (4), they are called the Jordan controlled 
form (JCF) [13]. 

Evidently, the canonical Frobenius form is a 

special case of JCF, where 1( )i ix x +φ =ɶ ɶ , 1, 1i n= −  

(for n > 1) and 0 1 1 2 1( )n n nx x x x−φ =−α −α − −αɶ ɶ ɶ ɶ…  [1, 8]. 

From expressions (2), (3) follows also, that JCF is a 
generalization of the known triangular form of the 
differential equations of a nonlinear controlled 
system [10]. 
 
 

3 Statement of Optimal Control 

System Design 
The problem of a optimal control system design for 
the plant (2), (3) consists in the definition of a 
control u  under which the uncertain nonlinear 

quadratic criteria satisfies to next condition  

2

0

[ ( ) ( )] minT

u
J x Q x x l u dt

∞

= + ρ →∫ ɶ ɶ ɶ .          (5) 

Here 0ρ >  is given number; ( )Q xɶ  and ( )l u  are 

uncertain n n× -matrix and scalar function. They 
shell be determined later.  

The problem of the optimal control systems 
design is solved here on base of the system 
equations in JCF, therefore the transformation 
process of the nonlinear differential equations to 
this form we shall consider more in detail. 
 

 

4 Transformations of the Systems 

Equations to JCF 
The equations in deviations of the nonlinear systems 
can be converted to JCF frequently by change of 
their variables designation. For example, the slightly 

changed system of the differential equations, 
considered in the book [17, p. 196], look like 

2
1 2 1x x x= −ɺ ;  2 1 2x x x u= +ɺ ;  3 2x x=ɺ .         (6) 

The form of the equations (6), evidently, does 
not meet JCF, but they are converted to this form, if 
their variables to designate as follows: 1 1x x= ɶ , 

2 3x x= ɶ , 3 2x x= ɶ . As a result the equations (6) take 

the form 
2

1 2 1 1( )x x x x= − = φɺɶ ɶ ɶ ɶ ;    2 3 2 ( )x x x= = φɺɶ ɶ ɶ ; 

    3 1 3 3 1( )x x x u x u= + = φ +ɺɶ ɶ ɶ ɶ .                  (7) 

Here 3n =  and 1 2 2 3( ) / ( ) / 1 0x x x x∂φ ∂ = ∂φ ∂ = ≠ɶ ɶ ɶ ɶ , 

i.e. the conditions (4) carry out in relation to the 
equations (7), hence, there equations  have JCF.  

If a nonlinear system of the differential 
equations have more complex kind the conditions 
(criterion) of the transformation possibility of these 
equations to the JCF are necessary. If the equations 
have the order above the third such criterion is 
unknown. Conditions of a transformation possibility 
of the third order system of the nonlinear 
differential equations to JCF are given in [8]. 
Corresponding conditions for a case of the second 
order nonlinear systems are considered here.  

Suppose, a nonlinear controlled system (plant) 
has the second order and equation of this system in 
deviations has view 

1( ) ( )x f x b x u= +ɺ ,                      (8) 

where 1 2[ ]Tx x x=  is a state vector of this system; 

1 2 1 2( ) [ ( ) ( )] , ( ) [ ( ) ( )]T Tf x f x f x b x b x b x= =  are 

the nonlinear differentiable vector-functions, and 
(0) 0if = , 1, 2i = ; control 1 1( )u u x=  is a nonlinear 

function of the vector x. 
First of all, we shall note, if the functions 

1( ) 0b x ≡  but 2 ( ) 0b x ≠  and the partial derivative 

1 2( ) / 0f x x∂ ∂ ≠  at everything 2
2xx R∈Ω ∈  the 

equation (8) has JCF with the control 

2 1( ) ( ) ( )u x b x u x= . If the function 2 ( ) 0b x ≡  but 

1( ) 0b x ≠  and partial derivative 2 1( ) / 0f x x∂ ∂ ≠  at 

everything 2xx∈Ω  this equation can be transformed 

to JCF by change of the variables and control 
designation as shown above.  

Therefore we shall assume further that the 
conditions 1( ) 0b x ≠  and  2 ( ) 0b x ≠  are satisfied in 

domain 2xΩ  and we shall enter an determinant 

( ) det[ ( ) ( )]G x f x b x= .              (9) 

Theorem 1. If the nonlinear vector-functions 
( )f x  and ( )b x  from the equation (8) in some 
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domain 2xΩ  satisfy to the next condition 

1 2
1 2

( ) ( ) ( )
G G

K x b x b x
x x

∂ ∂
= + −

∂ ∂
 

1 2

1 2

( ) ( )
( ) 0

b x b x
G x

x x

 ∂ ∂
− + ≠ 

∂ ∂ 
,      (10) 

there is an invertible, continuous transformation 
( ), (0) 0x x= ψ ψ =ɶ , which transforms the 

equation (8) to JCF. 
The proof of this theorem is given in appendix.  

The inequality (10) is the condition (criterion) of the 
transformation possibility of the second order 
systems equations such as (8) to JFC. If for a given 
system this inequality is carried out to find the 
transformation of such systems to JCF it is enough 
to integrate of the partial derivatives which follow 
from expressions (68) – (71). The constants of 
integration and the integrating multiplier ( )xµ ɶ  are 

chosen on the conditions (0) 0iφ = , 1, 2i =  and 

( ) 0x∆ ≡/ɶ  which follow from the expressions (68) 

and (69).  
Validity of the theorem statement we shall show 

on the example. 
Example 1. The converter increasing a voltage of 

a direct current includes any source of the constant 
voltage, the controlled switchboard, the inductance 
and the capacity is connected with active load. 
Currents through inductance and capacity are 
switched with some period. As shown in [18], the 
average changes of the inductance current and the 
voltage on capacity are described by the equations  

1 1(1 )L C SRI U L U L− −= − − τ +ɺ , 

1 1( (1 ) )C L CU C I U R− −= − τ −ɺ .            (11)  

Here LI  is a current in the inductance L; CU  is a 

voltage on the capacity C and on the load resistance 
R ; SRU  is the voltage of the source of a constant 

current with unlimited power; /CHT Tτ =  is the 

relative duration of the capacity charge time, 
[0,1]τ∈ ; T is the period of currents switching; CHT  

is the duration of the capacity charge time at the 
period. The equations (11) are necessary to 
transform to JCF. 

To solve the task the converter equations in 
deviations are found first of all. The steady state 

values of the current LI
�  and the voltage CU �  

(at Constτ = τ =� ) are determined according to the 
equations (11) by the next expressions:  

1 /SR CU Uτ = −� � ,   2/(1 )L SRI U R= − τ� � ,      (12) 

where CU � – the required output increased voltage on 

the converter load, i.e. C SRU U>� .  

To receive the equations of the converter in the 
deviations, the new state variables and control are 
entered so: 

1 L Lx I I= − � ,  2 C Cx U U= − � ,  1u = τ − τ� .       (13) 

The equations in the deviations are defined by 
differentiation on time of the variables 1 2,x x  (13) 

in view of the equations (11): 

 2
1 2 1

( )(1 ) Cx U
x x u

L L

+− τ
= − +

��

ɺ , 

 2 1
2 1 1

( )(1 ) Lx x I
x x u

C RL C

+− τ
= − − −

��

ɺ .       (14) 

Control 1u  is contained into both equations (14), 

i.e. there equations do not meet JCF on the form. To 
solve the considered task in the beginning we shall 
estimate a possibility of transformation to JCF the 
equations (14).  

With this purpose the determinant ( )G x  is 

determined on (9) and the function ( )K x  is 

determined on (10). As the result we shall receive: 
2

2 1 2( ) [2 ] /C SRG x U x U Rx x RLC= − +�  and 
2

2 1( ) ( )[ 2 ( )] / ( )C SR LK x x U U RC L x I R LC= − + + +� �  

or in view of the designations (13) the function 
2( ) [ 2 )]/ ( )C SR LK x U U RC LI R LC= − + . The voltage 

2C CU x U= + �  and the current 1L LI x I= + �  do not 

change the signs in operating modes. Hence, the 
condition (10) is carried out and equations (14) can 
be transformed to JCF. 

Let ( )x x= ϕɶ  there is the inverse to 

transformation ( )x x= ψ ɶ , i.e. ( ( ))x xψ ϕ = . In the 

equations (13) the functions 1 2( ) ( )Cb x x U L= − + � , 

2 1( ) ( ) /Lb x x I C= + �  and 2 2 1 1( ) / ( ) / 0b x x b x x∂ ∂ = ∂ ∂ = , 

therefore the inverse transformation ( )xϕ  as: 

1 1 2( , )x x x= ϕɶ , 2 2x x=ɶ  can be found easier.  

As shown above the function 1 2( , )x xϕ can be 

determined by integrated of the partial derivatives 

1 2( ) / ( ) ( )x x b x x∂ϕ ∂ = − µ  and 2 1( ) / ( ) ( )x x b x x∂ϕ ∂ = µ , 

where ( )xµ  is an integrating multiplier. These 

derivatives are integrated with µ( ) µ 2x LC= =ɶ  for 

simplicity. Resulting transformation looks like 

2 2
1 1 2 0( ) ( ) ( )L Cx x x I L x U C= ϕ = + + + + ϕ� �
ɶ , 

  2 2x x=ɶ .                              (15) 

The constant   
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2 2
0 ( ) ( )C LU C I Lϕ = − −� �                 (16) 

is found on the condition (0) 0ϕ = . 

Direct transformation of the state vector 
( )x x= ψ ɶ  is defined by the expressions:  

1 1( ) ( )L Lx x I x I= ψ = − �ɶɶ ɶ ,  2 2 2( )x x x= ψ =ɶ ɶ ,   (17) 

 where  

2 1
1 2 0( ) [ ( ) ]L CI x x x U C L−= − + −ϕ�ɶ ɶ ɶ ɶ .       (18) 

( )LI xɶ ɶ  is the expression for the current in the 

inductance as the function of the new variables 

1 2andx xɶ ɶ .  

The direct transformation (17) exists at all values 
of the variables 1 2andx xɶ ɶ  since the expression of 

under the root equals 2
1( )Lx I+ �  in the formula (18). 

The new equations of the converter are found by 
differentiation on time of the variables 

1 1 2( , )x x x= ϕɶ , 2 2x x=ɶ  (15) in view of the 

expressions (12), (13),  (16) – (18) and the equations 
(14). The resulted equations of the converter have 
view 

1 1 1 1 2( ) ( , )x x x x= φ = φɺɶ ɶ ɶ ɶ ,                  (19) 

2 2 1 2( , )x x x u= φ +ɺɶ ɶ ɶ ,                      (20)   

where  

2
1 и 2 2( ) 2[ ( ( ) ) 2 ] /L L Cx U R I x I U x x Rφ = − − −� �ɶɶ ɶ ɶ ɶ , 

2 2( ) [(1 )( ( ) ) ] /L Lx I x I R x RCφ = − τ − −� �ɶɶ ɶ ɶ ,     (21) 

1
1( )Lu I x C u−= − ɶ ɶ  is the new control.  

The left part of the condition (4) in relation to the 
equations (19) – (21) and again in view of the 
expressions (12), (13) and (15) – (18) has view 

1 и

2

2( )
2C

L

Ux U RC

x R LI

 ∂φ
= − + ∂  

ɶ

ɶ
. 

As was marked above the current 1L LI x I= + �  of 

the inductance is positive and does not change the 
sign, therefore from this expression is follows, that 
the condition (4) with 2n =  is carried out, i.e. the 
equations (19), (20) have JCF similarly to the 
equations (2), (3) or (7). 

On the basis of the controlled system equations 
in JCF a stabilizing and optimal controls can be 
found. The stabilizing control is found directly on 
the equations in JCF (2), (3), but the optimization 
problem (2) – (5) is solved here in two stages. For 
the solution of the last problem, the linearization 
control is designed for the nonlinear plant (2), (3) at 

the first stage. The optimal control is designed at the 
second stage.  
 
 

5 Linearization Control Design 
Used here a linearization control is a special case of 
the stabilizing control which was proposed in [13]. 
To design this control for the equations (2), (3) 
under the conditions (4) the transformation of the 
state vector xɶ  to new state vector w is determined as 
follows:  

1 2( ) [ ( ) ( ) ( )]Tnw w x w x w x w x= = …ɶ ɶ ɶ ɶ ,     (22) 

where 

1 1w x= ɶ ,    
1

1
1 1 1 1

1

( ) ( ) ( )
i

i
i i i i i

w
w x x w x

x

−
−

ν ν+ − − −
ν= ν

∂
= φ +λ

∂∑ɶ ɶ ɶ
ɶ

, 2,i n= , (23) 

1 0iλ ≥ ε >  are some constants, 1, 1i n= −  [8, 13].  

The transformation ( )w xɶ  (22), (23) is bounded 

and convertible by virtue of the conditions (4), i.e. 

in the domain n
x RΩ ∈ɶ  there is a bounded inverse 

transformation ( )x x w=ɶ ɶ  such that 
( )

( )
w x

x w x=
ɶ

ɶ ɶ .  

The stabilizing control ( )u u x= ɶ  for the system 

(2), (3) is determined by the expression  

[ ]1
1 2( ) ( ) ( ) ( )n n nu x x w x x−= −γ γ + λ − φɶ ɶ ɶ ɶ ,      (24) 

where 
1

1
1 1

1 1

( ) ( )
( )

n
n i i

in i

w x x
x

x x

−
+

= +

∂ ∂φ
γ = γ = =

∂ ∂∏
ɶ ɶ

ɶ
ɶ ɶ

,        (25) 

1

2 1
1

( )
( ) ( )

n
nw x

x x
x

−

µ µ+
µ= µ

∂
γ = φ

∂∑
ɶ
ɶɶ ɶ

ɶ
,   xx∈Ω ɶɶ ,       (26) 

1 0nλ ≥ ε > . The variable ( )nw xɶ  is determined also  

by the expressions (23) [14, 15]. 
The important property of the control (24) – (26) 

is that the closed system (2), (3), (24) is described in 

the variables iw , 1,i n=  by a system of the linear 

stationary differential equations which have the 
following kind: 

nw w= Λɺ ,   

1

1

1 0

0 0

1

0 0

n

n

−λ 
 −λ Λ =
 
 

−λ 

…

⋱

⋮ ⋮ ⋱

…

,     (27) 

Note, the conditions (4) ensure the existence of 
the stabilizing control (24) – (26) in the domain 

xx∈Ω ɶɶ . The matrix nΛ  (27) coincides with the 

Jordan n n× -cell [19, p. 142] with iλ = −λ , 1,i n= . 

Therefore the system of the equations (2), (3) is 
called Jordan controlled form, if the conditions (4) 
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carry out in some domain Ω n
x R∈
ɶ

 [13].  

Evidently, the system (27) is asymptotically 

stable if 1 0iλ ≥ ε > , 1,i n= . Since the 

transformation (22), (23) is convertible and 
bounded, then the equilibrium 0x =ɶ  of the system 

(2), (3), (24) – (26) with 1 0iλ ≥ ε > , 1,i n=  also 

asymptotically stable in the domain Ω n
x R∈
ɶ

, i.e. 

the control (24) – (26) under shown conditions is the 
stabilizing control. 

Let's show this property of the control (24) – (26) 
on an example. 

Example 2. At some assumptions longitudinal 
movement of a aircraft is described by the equations 

1 1sin cosVT gV− −θ = α − θɺ ,  

 1 sinT k k−
ω α δϑ = − ϑ− α + δɺɺ ɺ ,              (28) 

where θ  is the corner of the trajectory inclination, 
α  is the attack corner, δ  is control input (the corner 
of the rudders deviation), ϑ = θ + α ; V is the flight 
speed, g is the gravity acceleration, VT , Tω ,  kα , kδ  

are the parameters of the aircraft [20].  

The variables values: 1arcsin( cos )VgT V −α = θ� � , 

ϑ = θ + α� � �  and the control 1 sink k −
α δδ = α� �  

correspond to the steady state movement of the 
aircraft. Let the designation of the deviations are: 

1x = θ − θ�ɶ , 2x =α−α�ɶ , 3x = αɺɶ , ( )u kδ= δ−δ� . The 

equations (28) in these deviations will become  

1 12 2 11 1 1 1 2sin( ) cos( ) ( , )x a x a x x x= α + − + θ = φ� �ɺɶ ɶ ɶ ɶ ɶ , 

  2 3 2 ( )x x x= = φɺɶ ɶ ɶ ,  3 3 ( )x x u= φ +ɺɶ ɶ ,         (29) 

where   

3 31 12 2 3 2( ) ( cos( )) sin( )x a a x x k xαφ =−σ− + α + − α +� �
ɶ ɶ ɶ ɶ , 

11 1 31 1( sin( ) ) ( )a x a x kδσ= +θ + φ − δ� �
ɶ ɶ ,  1

11a gV−= , 

1
12 Va T −= ,  1

31a T −
ω= . 

If 2 2xα + < π�
ɶ , the equations (29) have JCF, 

since 1 1 2 2 12 2( , ) / cos( ) 0x x x a x∂φ ∂ = α + ≠�
ɶ ɶ ɶ ɶ , and 

2 3( ) / 1x x∂φ ∂ =ɶ ɶ . The variables iw , the functions 

1( )xγ ɶ  and 2 ( )xγ ɶ  are determined by expressions 

(22), (23), (25), (26): 

1 1w x= ɶ ,   2 1 1 2 1 1( , )w x x x= φ + λɶ ɶ ɶ ,  

    3 1 1 1 1 2 1 12 3 2( ) ( ) ( ) cos( )w x x x x a x x=σ φ +λ λ + α +�ɶ ɶ ɶ ɶ ɶ ɶ , 

1 12 2( ) cos( )x a xγ = α +�ɶ ɶ ,  

2
2 11 12 1 2 11 1( ) [ cos sin( ) cos2( )x a a x x a xγ = α + − + θ +� �
ɶ ɶ ɶ ɶ  

1 2 1 2 11 1 1 2( ) sin( )] ( ) ( )a x x x+λ λ + λ + λ + θ φ + σ�
ɶ ɶ ɶ , 

where 

1 1 1 2 11 1( ) sin( )x a xσ = λ + λ + + θ�ɶ ɶ , 

2 1 1 2 3 2 12 3( ) [ ( )cos( ) sin( )]x x x x x a xσ = σ α + − α +� �
ɶ ɶ ɶ ɶ ɶ ɶ . 

The found here expressions determine the 
stabilizing control for the aircraft (28) or (29) by the 
expression (24). This control has view 

1
12 2 2 3 3 3( ) ( cos( )) [ ( ) ( )] ( )u x a x x w x x−=− α + γ +λ −φ�

ɶ ɶ ɶ ɶ ɶ , 

 2 2xα + < π�
ɶ .                         (30) 

On Fig. 1 the schedules of the deviations ( )ix tɶ , 

1, 2, 3i =  are shown. They are received as the 

simulation result of the closed system (29), (30) in 
MATLAB with 11 0.07α = , 12 0.5α = , 31 0.1α = , 

1 0.1kα = , 1 1dk = , 1 3.5λ = , 2 5.5λ = , 3 8λ =  and 

0 [0.35 0.15 0]x = −ɶ . All the systems deviations 

aspire to zero. 

0 0.5 1 1.5 2 2.5 3
-5

-4

-3

-2

-1

0

1

2

t

x

t

1xɶ

2xɶ

3xɶ

 
Fig. 1– Deviations of the aircraft variables 

 
It is easy to check up, that the equations of the 

closed system (29), (30) in the variables iw , 

1, 2, 3i =  are linear and looks like: 

3.5 1 0

0 5.5 1

0 0 8

w w

− 
 = − 
 − 

ɺ . 

 This equation corresponds to expressions (27) 
with 3n =  completely. Hence, the control (24) – 
(26) is the stabilizing control, really. 

The expressions (23) – (27) are fair at all values 
of the constants iλ . The necessary in further 

linearization control follows from these 
expressions, if the conditions (4) are carried out 
and 0iλ = , 1,i n= . This control is described by 

the next expression 
1
1 2( ) ( ) ( ) ( )lin o o nu x x x x−= −γ γ − φɶ ɶ ɶ ɶ ,             (31) 
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where the functions 1( )o xγ ɶ  and 2 ( )o xγ ɶ  are 

determined also by the expressions (25), (26). But in 
these expressions the variables iw  should be 

replaced by the variables  

1 1ow x= ɶ ,    
1

1
1

1

( ) ( )
i

oi
oi i

w
w x x

x

−
−

ν ν+
ν= ν

∂
= φ

∂∑ɶ ɶ
ɶ

,   1,i n= .       (32) 

Note, the control (31), (32) depends only from 
properties of the given nonlinear plant (2), (3). This 
linearization control is used at the problem solution 
of the optimal control system design.  

 
 

6 Optimal Control System Design 
After definition of the linearization control we can 
determine the uncertain matrix ( )Q xɶ  and the 

function ( )l x  in the nonlinear quadratic criteria 

from the optimality condition (5). Let 

( ) ( ) ( )TQ x S x QS x=ɶ ɶ ɶ ,   1( ) ( )[ ( )]o linl u x u u x= γ −ɶ ɶ , 

where 0Q ≥  is a symmetrical numerical matrix; the 

matrix ( )S xɶ  is a matrix from a quasilinear 

representation of the transformation ( ) ( )ow x S x x=ɶ ɶ ɶ  

(32) [8, 9]. This representation is determined [8] by 
the expressions     

1

0

( ) ( )oS x w x d′= θ θ∫ɶ ɶ ,   ( ) ( ) /o ow x w x x′ = ∂ ∂ɶ ɶ ɶ .  (33) 

The matrix ( )S xɶ  (33) is non-singular by virtue of 

the condition (4).  
Thus the condition (5) finally looks like 

2 2
1

0

[ ( ) ( ) ( )[ ( )] ] minT T
o lin

u
J x S x QS x x x u u x dt

∞

= +ργ − →∫ ɶ ɶ ɶ ɶ ɶ ɶ . 

 (34) 
where the function ( )linu xɶ  is determined by the 

expression (31).  

Values of the matrix Q  coefficients and the 

number ρ  are chosen in accordance with the desired 

transient of the nonlinear optimal control system. 
For solution of the optimization problem (2), (3), 

(34) the control u  at the equation (3) is taken in the 
form 

 1
1( ) ( )lin ou u x x v−= + γɶ ɶ .                  (35) 

Here v  is a new control input of the close system 
(2), (3), (35). The equations (2), (3) are recorded in 
view of the control (35) as follows: 

1
1( ) ( )lin n ox x e x v−= φ + γɺɶ ɶ ɶ ,               (36) 

where 1( ) [ ( ) ( )] ( )T
lin n n linx x x e u xφ = φ φ +ɶ ɶ ɶ ɶ… . 

Since the control ( )linu xɶ  is determined by the 

expressions (25), (26) and (31), (32) therefore in 
accordance with the equations (27) the nonlinear 
system (36) is described at the state variables oiw , 

1,i n=  by the next expressions  

o n o nw w e v= Λ +ɺ ,  

0 1 0

0 0 0

1

0 0 0

n

 
 
 Λ =
 
 
 

…

⋱

⋮ ⋮ ⋱

…

,    (37) 

Diagonal elements of the matrix nΛ  in (37) 

equal to zero as the linearization control ( )linu xɶ  is 

defined with 0iλ = , 1,i n= . 

At the variables oiw , 1,i n=  in view of the 

equality ( ) ( )ow x S x x=ɶ ɶ ɶ  and the expression (35) the 

criteria in the condition (34) looks like 

2

0

[ ]T
o oJ w Qw v dt

∞

= + ρ∫ .                 (38) 

As is well-known, the optimal control OCv  

minimizing the quadratic criteria (38) on the 
trajectories of the system (37) is determined by the 
expression 

1 T
OC n ov e Pw−= −ρ .                     (39) 

Here P is the symmetric, positive definite matrix, 
which is a solution of the Riccati equation 

1 0T T
n n n nP P Pe e P Q−Λ + Λ − ρ + = .         (40) 

where 0Q ≥ , 0ρ >  are the matrix and the number 

from the quadratic criteria (34) and (38) [1, 3, 8].  

Theorem 2. If the matrix 0Q ≥  and the number 

0ρ >  in the Riccati equation (40) are taken from the 

condition (34), the optimal control is defined in the 
equation (3) by expression 

1 1
1( ) ( ) ( )T

OC lin o nu u x x e P S x x− −= − γ ρɶ ɶ ɶ ɶ .         (41) 

The proof of this theorem is not given here, as its 
statement is evidently enough, in view of 
convertibility of the transformation ( ) ( )ow x S x x=ɶ ɶ ɶ .  

Note also, the theorem 2 can be proved with 
using the condition of a local minimum of integral 
[21, p. 322] and the dependences of the matrix ( )S xɶ  

and the functions 1( )o xγ ɶ , ( )linu xɶ  only from the 

nonlinear functions of the equations (2), (3).  
The expressions (25), (26), (31), (32), (33), (40) 

and (41) are the mathematical base of the propose 
method of the optimal control system design for 
nonlinear controlled systems (plants). This method 
is much easier in comparison with other methods of 
the optimization problem solution, for example, by 
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using the Pontryagin Minimum Principle or the 
Hamilton–Jacobi–Bellman equation [16]. If the 
equations of the given plant are transformed to JCF 
the design procedure of the optimal control system 
is completely analytical. 

The Riccati equation (40) is solved by the known 
MATLAB function ARE as usual. Values of the 

matrix Q  factors and number ρ  are appointed by 

the iterations method for reception of the 
satisfactory transients. The properties of the 
nonlinear optimal system (2), (3), (41) can be 
changed by a choice of the criteria parameters as in 
the linear case.  

When the equations of the given controlled 
system (plant) have a general view, design of the 
nonlinear optimal control systems by the proposed 
method is carried out in the following sequence: 

- the equations of the plant are wrote  in 
deviations if it is necessary; 

- the equations in deviations are converted to JCF 
if it is necessary; 

- the linearization control is designed on the basis 
of the equations in JCF; 

- the nonlinear quadratic criteria is determined 
finally and the optimal control is found; 

- the parameters of the quadratic criteria get out 
on desirable character of transient.  

Efficiency of the optimal control systems design 
by the proposed method we shall show on examples. 
 
 

7 Examples 
Example 3. For the nonlinear controlled system [17, 
p. 188], which is described in deviations by the 
equations 

1 2x x=ɺ , 3
2 3x x u= +ɺ ,  3

3 1 3x x cx= +ɺ ,       (42) 

to find two variants of an optimal control 
( )OCu u x= ɶ  on the condition (34), where 0.5ρ =  

and matrix Q  is equals 1 diag{2 1 5}Q =  or 

2 diag{50 12 3}Q = . 

The equations (42) are in deviations, but their 
form does not meet JCF, evidently. To present these 
equations in JCF their variables we shall designate 
as follows: 1 2x x= ɶ , 2 3x x= ɶ ,  3 1x x= ɶ . The resulting 

equations of the given controlled system look like 
3

1 2 1 1( )x x cx x= + = φɺɶ ɶ ɶ ɶ ;    2 3 2 ( )x x x= = φɺɶ ɶ ɶ ; 

  3
3 1 3( )x x u x u= + = φ +ɺɶ ɶ ɶ .                  (43) 

The equations (43) satisfy to the conditions (4) 
since 1 2( ) / 1x x∂φ ∂ =ɶ ɶ  and 2 3( ) / 1x x∂φ ∂ =ɶ ɶ  for all 

3x R∈ɶ . Therefore these equations have JCF and the 

considered task has a solution.  
Further, according to the proposed method a 

linearization control is designed. For this purpose 
the transformation ( )o ow w x= ɶ  is determined by the 

expressions (32) in view of the equations (43) and 
looks like: 

1 1ow x= ɶ ,   3
2 1 2ow cx x= +ɶ ɶ , 

   2 5 2
3 1 1 2 33 3ow c x cx x x= + +ɶ ɶ ɶ ɶ                 (44) 

or in the quasilinear vector-matrix form: 
( ) ( )ow x S x x=ɶ ɶ ɶ , where  

   2
1

2 4 2
1 1 2 1

1 0 0

( ) 1 0

3 2 1

S x cx

c x cx x cx

 
 

=  
 + 

ɶ ɶ

ɶ ɶ ɶ ɶ

.           (45) 

The transformation (44) is not singular, 

convertible and bounded for all 3x R∈ɶ , x < ∞ɶ . 

The functions 1( )o xγ ɶ  and 2 ( )o xγ ɶ  are determined by 

the expressions (25), (26) using the equations (43) 

and the variables oiw , 1, 3i =  (44) as:  

1( ) 1o xγ =ɶ , 

   4 2 7 2 2
2 1 2 1 1 2 1 3( ) 3 (7 5 2 )o x c cx x c x x x x xγ = + + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ .    (46) 

Now the linearization control is written on the 
expression (31) with 3n =  as: 

3
2 1( ) ( )lin ou x x x= −γ −ɶ ɶ ɶ .                   (47) 

The matrix P as a solution of the Riccati 
equation (40) with the given matrix 

1 diag{2 1 5}Q =  and 0.5ρ =  is  

1

4.398 4.335 1

4.335 8.533 2.199

1 2.199 2.168

P

 
 = 
  

.              (48) 

Therefore, first variant of the optimal control, 
determining by the expressions (41) in view of the 
linearization control (47), the functions 1( ) 1o xγ =ɶ , 

2 ( )o xγ ɶ  (46), 0.5ρ =  and the matrices ( )S xɶ  (45), 

and 1P P=  (48) there is 

3
1 2 1 1 2 3( ) (2 4.398 4.336OC ou x x x x x= −γ − − + + +ɶ ɶ ɶ ɶ ɶ  

2 3 3
1 1 2 113.01 ( ) 4.398 )c x c x x c x+ + +ɶ ɶ ɶ ɶ .     (49) 

Similarly, the solution of the Riccati equation 

(40) with the matrix 2 diag{50 12 3}Q =  and 

0.5ρ =  is the matrix 

2

57.358 26.9 5.0

26.9 25.858 5.736

5.0 5.736 2.69

P

 
 =  
  

.           (50) 
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Hence, the second variant of the optimal control, 
determining by the expressions (41), (50) is: 

3
2 2 1 1 2 3( ) (10 11.472 5.38OC ou x x x x x= −γ − − + + +ɶ ɶ ɶ ɶ ɶ  

2 3 3
1 1 2 116.14 ( ) 5.38 )c x c x x c x+ + +ɶ ɶ ɶ ɶ .       (51) 

Transients of closed system (43), with the 
optimal controls (49) and (51) are submitted on Fig. 
1,a and Fig. 1,b accordingly. These schedules are 
received by simulation of the optimal systems in 
MATLAB with 0.2c =  and 0 [ 1.2 0 1]x = −ɶ . 

Reader can see, that transitive process on Fig. 1,a 
has big duration and the transitive process on Fig. 
2,b has smaller duration. 

Shown difference between the transients is 

caused by the various values of the matrixes 1Q  and 

2Q  factors. Hence, the transient’s character of the 

nonlinear optimal control systems really can be 
changed by a choice of the factors values of the 
nonlinear optimization criteria.  
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Fig. 2– Transients of the optimal control system  
 

Example 4. For considered in example 2 
converter a control system is designed here to 
compare the possibilities of the optimal and 
stabilizing controls for nonlinear systems. The 
optimal control is determined when in the condition 
(34) the number 0.2ρ =  and the matrixes: 

1

5 0

0 400
Q

 
=  
 

,  2

6000 0

0 5
Q

 
=  
 

,  3

6000 170

170 5
Q

 
= 
 

. (52) 

For the solution of the task the stabilizing and 

optimal controls are designed below on base of the 
converter equations in JCF.  

The initial equations (11) of the given converter 
do not meet JCF; therefore they were transformed to 
this form in section 4. The equations (19), (20) are 
the resulting equations of the converter in JCF. 

Design of the stabilizing control. As the 
converter equations have the order 2n = , for 
definition of this control the variables 1( )w xɶ , 2 ( )w xɶ  

are found on the expressions (22), (23) and 

functions 1( )xγ ɶ , 2 ( )xγ ɶ  are found on the 

expressions (25), (26): 

11
~xw = , 

2 1
2 2 2 1 12[ ( ( ) ) 2 ]SR L L Cw U R I x I x U x R x−= − − − +λ� �ɶ ɶ ɶ ɶ ɶ ,   (53) 

1

1 22
1 0 2

2 4
( ) ( )

( ) ( )

SR
C

C

U C L
x x U

Rx x U C

− 
 γ =− + +
 −ϕ − + 

�

�

ɶ ɶ

ɶ ɶ

, (54) 

2
2 1 1

1

( )
( ) ( )

w x
x x

x

 ∂
γ = + λ φ = 

∂ 

ɶ
ɶ ɶ

ɶ
 

1 11 2
1

( )
( )

SR

L

U
x

L x I
−

 
 = + λ φ
 + 

�

ɶ

ɶ

.     (55) 

Here the constant 0ϕ  and the functions ( )LI xɶ ɶ , 

1( )xφ ɶ  are determined by the expressions (16) and 

(18), (21). 
The stabilizing control of the converter in 

variables 1 2,x xɶ ɶ  (15) is determined by the 

expression (24) in view of the equations (19), (20), 
the expressions (53) – (55) and it looks like: 

1
2 1( ) ( ) ( )SCu x x x−= −φ − γ ×ɶ ɶ ɶ  

1 2 1 1 2 11 2
1

( )
( )

SR

L

U
x x

L x I−

  
  × + λ +λ φ +λ λ
  +  

�

ɶ ɶ

ɶ

.   (56) 

In the expressions (53), (55), (56) 1 2,λ λ  are 

varied parameters, which values determine character 
of the converter transients with using of the 
stabilizing control ( )SCu xɶ .  

Design of the optimal control. For solution of 
this problem, according to the proposed method the 
variables 1( )ow xɶ , 2( )ow xɶ  and the function 2 ( )o xγ ɶ  

are found on the expressions (32) at 2n = , (21) and  
equation (19), (20) correspondently:  

1 1ow x= ɶ , 

2
2 и 2 2( ) 2[ ( ( ) ) 2 ]/o L L Cw x U R I x I x U x R= − − −� �
ɶ ɶ ɶ ɶ , 
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2 1
2 1 1 2

1 1

( )
( ) ( )

( )

o SR
o

L

w U x
x x

x L x I−

∂ φ
γ = φ =

∂ + �

ɶ
ɶ ɶ

ɶ ɶ

.      (57) 

The function 1 1( ) ( )o x xγ = γɶ ɶ  is determined here by the 

expression (54), as well as in the previous case. 
The linearization control is determined by the 

expressions (31), (21), (54), (57) and looks like   

1
21 2

1 1

( )
( ) ( )

( ) ( )

SR
lin

o L

U x
u x x

x L x I−

φ
= − − φ

γ + �

ɶ
ɶ ɶ

ɶ ɶ

.    (58) 

Further, we determine the matrix ( )S xɶ . In this 

case the system order 2n = , therefore the matrix 
( )S xɶ  has next view 

21 22

1 0
( )

( ) ( )
S x

S x S x

 
=  

 
ɶ

ɶ ɶ
,               (59) 

and the expressions (33) is possible to replace by the 
following formulas: 

1

21 21 1

0

( ) ( )oS x w x d′= θ θ∫ɶ ɶ , 
1

22 22 1 2

0

( ) ( , )oS x w x x d′= θ θ∫ɶ ɶ ɶ , (60) 

where 

2
21 1 1 2

1 1

( )
2 ( )

( )

o SR
o SR L

L

w x U
w U I x

x L x I−

∂
′ ′= = =

∂ + �

ɶ
ɶ ɶ

ɶ ɶ

, 

02
22 2 2

2

( ) 2
( ( ) 2 2 )o SR L C

w x
w U RI x U x

x R

∂
′ ′= = − − =

∂
�ɶ

ɶ ɶ ɶ
ɶ

 

1
2 2

1 2 1
1 0 2

2 ( ) 4( )

( ) ( )

SR C C

C

U x U CL U x

Rx L x U CL

−

− −

− + +
= −

−ϕ − +

� �

�

ɶ ɶ

ɶ ɶ

. 

Integration in the expression (60) is carried out 
with application of the formulas (191.01) and 
(321.01) [22]. In result we have received 

( )1 2 1
21 1 1( ) 2 ( ) /SR L LS x U L x I I L x− −= + −� �
ɶ ɶ ɶ ,   (61) 

(1 1 1 2
22 2 1 0 2( ) 2 ( ) ( )SR CS x U x CL x C x U− − −= −ϕ − + −�
ɶ ɶ ɶ ɶ  

) ( )1 2
1 0 2

2
( ) ( ) 2C Cx C U U x

R

−− −ϕ − − +� �
ɶ ɶ .   (62) 

The solution of the equation Riccati (40) with the 

matrix 1Q  (52), vector 2 [0 1]Te =  and factor 

0.2ρ =  looks like 

2.3767 0.8944

0.8944 0.9787
P

 
=  

 
.                 (63) 

The product ( )T
ne PS x xɶ ɶ  on the basis of the 

expressions (59), (61) – (63) is given  

1 21 1 22 2( ) 0.894 0.979[ ( ) ( ) ]T
ne P S x x x S x x S x x= + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ . 

Hence, as 1 1( ) ( )o x xγ = γɶ ɶ  (54), the optimal 

control, corresponding to the matrix 1Q  on the 

expression (41) is determined by the next expression 
1

1 1 1( ) ( ) ( ){4.472OC linu x u x x x−= − γ +ɶ ɶ ɶ ɶ  

21 1 22 24.8935[ ( ) ( ) ]}S x x S x x+ +ɶ ɶ ɶ ɶ .   (64) 

The optimal controls ( )OCu xɶ , corresponding to  

the factor 0.2ρ =  and the matrixes 2Q  and 3Q  (52) 

are found similarly and have view: 
1

2 1 1( ) ( ) ( ){20.9795OC linu x u x x x−= − γ +ɶ ɶ ɶ ɶ  

21 1 22 247.3495[ ( ) ( ) ]}S x x S x x+ +ɶ ɶ ɶ ɶ ,    (65) 

1
3 1 1( ) ( ) ( ){20.976OC linu x u x x x−= − γ +ɶ ɶ ɶ ɶ  

21 1 22 266.65[ ( ) ( ) ]}S x x S x x+ +ɶ ɶ ɶ ɶ .   (66) 

Thus, the stabilizing control for the considered 
converter is described by the expressions (21), (54), 
(56) and it has two varied parameters. At the same 
time, the optimal control is described by the 
expressions (21), (54), (58), (41) and it has three 
varied parameters. In other words, the optimal 
control of the converter is more complex than the 
stabilizing control.  

On the other hand, comparing the expressions 
(40), (41) with the expressions (23), (24) it is easy to 
conclude, that in generally case the optimal control 
has ( 1) / 2n n +  varied parameters and the stabilizing 

control has only n  such parameters. Hence, the 
optimal control designed by the proposed method 
has wide possibilities in comparison with the 
stabilizing control. 

To investigate properties of the designed control 
system for the considered converter this system was 
simulated in MATLAB both with the stabilizing and 
with the optimal control. The simulation was spent with 
using of the converter equations in deviations (19), (20) 
with the various values of the initial conditions, values 
of the voltage of the power supply and the resistance of 
the load. But the basic attention was given to the 
dependence of the character voltage on the load from 
the controls parameters. 

The transient’s schedules of the load voltage with 
application of the stabilizing control (56) are shown on 
Fig. 3. These schedules are received with the voltage of 
the power supply 60SRU = V, the desired output 

voltage of the converter 100CU =�  and the load 

resistance 0,2R = Ohm, 0.55L =  mGn, 1.15C =  µF. 

Schedules on Fig. 3,а correspond to values 1 5λ = , 

2 3λ =  and schedules on Fig. 3,b would correspond to 

values 1 5λ = , 2 10λ = . In the first case the transient 
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duration 1,28TRt = second and the overshot 6,9σ = %. 

In the second case 0,38TRt =  second and 6,0σ = %.  
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Fig.3– Transients of the output voltage converter  
 

Actual control of the converter (11) is the 
relative duration of time of the capacity charge: 

[0,1]τ∈ . This quantity is connected with the 

control ( )u u x= ɶ  from the equations (19), (20) by 

the expression ( ) / ( )LCu x I xτ = τ −� ɶɶ ɶ . The example of 

the control transients τ  is shown on Fig. 4.  
Thus, the stabilizing control (56) provides the 

equilibrium stability of the examined converter. 
Changes of the control factors 1λ  and 2λ  cause the 

change of the transients’ duration. The transients’ 
character and the overshot change not essentially. 
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 Fig. 4– Transients of the control converter 
 
The control system of the converter with optimal 

control (64) – (66) was simulated with the same voltage 
of the power supply, a desirable output voltage and the 
load resistance with various values of the factor ρ  and 

elements of the matrix Q . Some results of the 

simulation are shown on fig. 5. They are received 
with 0 [ 150 95]x = − −ɶ , 0.2ρ =  and matrixes (52): 

Schedules of the load voltage transients shown on 
Fig. 5,a are received with the optimal control (64); the 
schedules on Fig. 5,b are received with the optimal 
control (65) and schedules on Fig. 5,c are received with 
the optimal control (66). Control τ  changes with the 
optimal controls similarly shown on Fig. 4.  
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Fig. 5–  Transients of the converter with optimal control 
 
Apparently, with the optimal control the 

transient’s duration is very small and depends from 

the matrix Q  of the quadratic criteria. If 1Q Q=  

then 0,05TRt = s, the overshot is absent. If 2Q Q=  

or 3Q Q=  then 0,25TRt = s, the overshot 

8,4σ = %. Note, the not diagonal elements of the 

matrix Q  do not influence practically on the 

character of the system’s transients in this case (see 
Fig. 5,b and Fig. 5,c).  
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Thus, the optimal control (41) really provides the 
more wide possibilities to give projected system the 
desirable character of transients, in comparison with the 
stabilizing control (24).  

The considered examples show also that the 
proposed method for the optimal control systems 
design is analytical, very simple and convenient for 
practical using at creation of the control systems for 
nonlinear plants. 
 
 

8 Conclusion 
Transformation of the nonlinear controlled systems 
(plants) equations to the Jordan controlled form 
allows using the proposed completely analytical 
method of the optimal control systems design. The 
resulted systems are optimal in the sense of a 
minimum of the nonlinear quadratic criteria. The 
optimal control is a nonlinear feedback on the state 
variables of the nonlinear plant. 

If the plants equations converted to JCF, the 
optimal control system is designed by the proposed 
method in two stages. The linearization control is 
designed at the first stage. The linearization control 
is constructed on the basis of the nonlinear 
transformation of the nonlinear plant state variables 
to the new state variables. The plant equations under 
the linearization control become linear in the new 
variables. Simultaneously the nonlinear 
optimization criteria becomes as a usual quadratic 
criteria. This fact gives possibility to apply the 
known method LQ which uses usually to receive the 
optimal control for linear systems.  

 The equations of a many real nonlinear plants 
have the Jordan controlled form or can be 
transformed to this form without the big difficulties. 
Therefore the representation of the nonlinear 
controlled systems equations in Jordan controlled 
form is not hard restrictions. The proposed method 
of the optimal nonlinear control system design is 
shown on the examples. 

From these examples follows, the nonlinear 
optimal control systems, designed by the proposed 
method, have more wide possibilities in comparison 
with the stabilization systems. 

This research is supposed to be continued in a 
direction of development of the transformation 
methods to JCF of the nonlinear plants equations of 
the general view. Creation of the computer program 
for the automated design of the optimal control 
systems for different nonlinear plants is planned 
also. 
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Appendix 
Proof of the theorem 1. Jacobeans of the 
transformation ( )x x= ψ ɶ  is the matrix 

 11 12

21 22

( ) ( )
( )

( ) ( )x

x x
J x

x x
ψ

ψ ψ 
=  ψ ψ 

ɶ

ɶ ɶ
ɶ

ɶ ɶ
,         (67) 

where ( ) ( )i j i jx x xψ = ∂ψ ∂ɶ ɶ ɶ . Since ( )xx J x xψ= ɺɺ ɶ ɶ , 

then in view of the expressions (8), we have 

1

( )
( )[ ( ) ( ) ( ) ]x x x

x J x f x b x u x−
ψ =ψ

= +ɶ ɶ

ɺɶ ɶ .    (68) 

On the other hand, the inverse of the matrix 
( )xJ xψ ɶ ɶ  looks like    

22 121

21 11

( ) ( )1
( )

( ) ( )( )
x

x x
J x

x xx

−
ψ

ψ −ψ 
=  −ψ ψ∆  

ɶ

ɶ ɶ
ɶ

ɶ ɶɶ
,    (69) 

if 11 22 21 12( ) ( ) ( ) ( ) ( ) 0x x x x x∆ = ψ ψ −ψ ψ ≠ɶ ɶ ɶ ɶ ɶ . 

 Substituting this expression for 1 ( )xJ x
−
ψ ɶ ɶ  in the 

equation (68), we conclude, at first, that according 
to the definition of JCF, the equality 

1 22 12 2( ( )) ( ) ( ) ( ( )) 0b x x x b xψ ψ − ψ ψ ≡ɶ ɶ ɶ ɶ  should be 

carried out in domain 2
2x RΩ ∈ɶ . From here with 

taking in attention some multiplier ( ) 0xµ ≡/ɶ  follows, 

that possible to take 

22 2( ) ( ( )) ( )x b x xψ = ψ µɶ ɶ ɶ , 

12 1( ) ( ( )) ( )x b x xψ = ψ µɶ ɶ ɶ .            (70) 

If these conditions are carried out, the equality 
(68) coincides with the equations (2), (3) at 2n =  
and 1( ) ( ( )) / ( )u x u x x= ψ µɶ ɶ ɶ . In this case the function 

1( )xφ ɶ  from the system of equations (68) is defined 

by expression 

1 22 1 12 2( ) [ ( ) ( ( )) ( ) ( ( ))] / ( )x x f x x f x xφ = ψ ψ −ψ ψ ∆ɶɶ ɶ ɶ ɶ ɶ ɶ , 

                        (71) 
where 2xx∈Ω ɶɶ , and 

11 2 21 1( ) [ ( ) ( ( )) ( ) ( ( ))] ( )x x b x x b x x∆ = ψ ψ − ψ ψ µɶ ɶ ɶ ɶ ɶ ɶ ɶ . 

Second, the inequalities ( ) 0x∆ ≡/ɶ ɶ  and 

1 2( ) / 0x x∂φ ∂ ≡/ɶ ɶ  should be carried out at the domain 

2xΩ ɶ  too. The inequality ( ) 0x∆ ≡/ɶ ɶ  can be provided by 

the choice of the partial derivatives 1 1( )x x∂ψ ∂ɶ ɶ  

and 2 1( )x x∂ψ ∂ɶ ɶ . Evidently, according to (70), 
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(71) the inequality 1 2( ) / 0x x∂φ ∂ ≡/ɶ ɶ  does not depend 

from the multiplier ( )xµ ɶ .  

Hence, the conditions of the transformation 
possibility of the equation (8) to JCF too do not 
depend from ( )xµ ɶ . Therefore further we accept 

( ) 1xµ =ɶ . In this case the determinant ( )x∆ɶ ɶ  is 

defined by expression 

11 2 21 1( ) [ ( ) ( ( )) ( ) ( ( ))] ( )x x b x x b x x∆ = ψ ψ −ψ ψ = ∆ɶ ɶ ɶ ɶ ɶ ɶ ɶ . 

Let's pass to finding-out of the conditions, at 
which the basic inequality 1 2( ) / 0x x∂φ ∂ ≡/ɶ ɶ  is 

carried out. For this purpose the function 1( )xφ ɶ  (71) 

is differentiated on 2xɶ  in view of the known 

integralability condition of the two variables 
functions: 

2 2

1 2 2 1

( ) ( )i ix x

x x x x

∂ ψ ∂ ψ
=

∂ ∂ ∂ ∂

ɶ ɶ

ɶ ɶ ɶ ɶ
,    1, 2i = .         (72) 

Argument of the nonlinear functions – the vector xɶ  
falls in the further expressions for their brevity.  

As result, we shall receive, that the condition (4) 
in relation to the equations system (68) is equivalent 
to the following inequality 

11 12 1 1 11 12 12 22 12

21 12 2 2 21 12 22 22 2

f b f b f b

f b f b f b

−
  ψ ψ ψ

∆ ∆ + + +  ψ ψ ψ 
 

1 12 22 1 1 112 1

2 22 22 2 2 212 2

( ) ( )

( ) ( )

f b f b b

f b f b b

 ψ ψ ψ ψ
+ − + ψ ψ ψ ψ 

 

11 11 12 11 12 22

21 21 12 21 22 22

0
b b

b b

ψ ψ ψ ψ 
+ + ≡/ψ ψ ψ ψ 

.      (73) 

Here and further  is designation of a determinant.  

If in (73) the determinants are opened and similar 
members are resulted, this expression takes a kind 

11 1 11 1 1 11 12 1
12 22

21 1 21 2 2 21 22 2

b f b f b f b

b f b f b f b

ψ
ψ + + ψ +ψ 

 

1 12 1 1 112 1
22

2 22 2 2 212 2

( ) ( )

( ) ( )

f b f b b

f b f b b

 ψ ψ ψ
+ ψ − + ψ ψ ψ 

 

11 11 11 12
12 22

21 21 21 22

0
b b

b b

ψ ψ
+ ψ + ψ ≡/ψ ψ 

.        (74) 

In view of the equalities (70) and ( ) 1xµ =ɶ  the 

inequality (74) becomes: 

11 1 1 11 12 1
1

21 2 2 21 22 2

∆
f b f b f b

b
f b f b f b

   
   + + +      

 

1 12 1 1
2

2 22 2 2

( ) ( )
0

( ) ( )

f b f b
b D

f b f b

 ψ ψ
+ − ≡/ ψ ψ 

,   (75) 

where 

112 1 11 11 11 12
1 2

212 2 21 21 21 22

b b b
D b b

b b b

 ψ ψ ψ
= + + ψ ψ ψ 

,  (76) 

11
112

2

( )x

x

∂ψ
ψ =

∂

ɶ

ɶ
,   21

212
2

( )x

x

∂ψ
ψ =

∂

ɶ

ɶ
.       (77) 

For definition of the partial derivatives 112 ( )xψ ɶ  

and 212 ( )xψ ɶ  we shall take in attention the 

integralability condition (72) again. On these 
conditions  

2
11 1

112 112
2 2 1

( ) ( )
( )

x x
x

x x x

∂ψ ∂ ψ
ψ = ψ = = =

∂ ∂ ∂

ɶ ɶ
ɶ

ɶ ɶ ɶ

2
1 12

1 2 1

( ) ( )x x

x x x

∂ ψ ∂ψ
= =

∂ ∂ ∂

ɶ ɶ

ɶ ɶ ɶ
. 

From here, in view of equality (70) and (77), we 
deduce 

1 1 1 2
112

1 1 2 1

( ( )) ( ) ( ( )) ( )b x x b x x

x x

∂ ψ ∂ψ ∂ ψ ∂ψ
ψ == +

∂ψ ∂ ∂ψ ∂

ɶ ɶ ɶ ɶ

ɶ ɶ
, 

or  

112 11 11 12 21b bψ = ψ + ψ .            (78) 

Similarly  

21 2 2 22
212

2 2 1 1 2 1

( ) ( ) ( ) ( )x x x x

x x x x x x

∂ψ ∂ψ ∂ψ ∂ψ
ψ = = = =

∂ ∂ ∂ ∂ ∂ ∂

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ
 

or 

2 1 2 2
212

1 1 2 1

( ( )) ( ) ( ( )) ( )b x x b x x

x x

∂ ψ ∂ψ ∂ ψ ∂ψ
ψ = +

∂ψ ∂ ∂ψ ∂

ɶ ɶ ɶ ɶ

ɶ ɶ
,  

  212 21 11 22 21b bψ = ψ + ψ .            (79) 

The first determinant in the expression (76) in 
view of the received equality (78) and (79) can be 
presented to as follows: 

112 1 11 11 12 21 1

212 2 21 11 22 21 2

b b b b

b b b b

ψ ψ + ψ
= =

ψ ψ + ψ
 

11 12 11 1

21 22 22 2

b b b

b b b

ψ   
=    ψ   

. 

Further, this expression is substituted in (76) and 
corresponding simplifications are carried out. As the 
result the expression (76) takes a kind 

2 11 11 12 21 1 21 11 22 21( ) ( )D b b b b b b= ψ + ψ − ψ + ψ +  

1 21 11 1 11 21 22 11 2 12 21 2b b b b b b b b+ ψ − ψ + ψ − ψ =  

2 11 22 11 1 11 22 21( ) ( )b b b b b b= + ψ − + ψ =  
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11 1
11 22 11 22

21 2

( ) ( )
b

b b b b
b

ψ
= + = + ∆

ψ
.  (80)                            

The expressions (78), (79) are substituted in (74) 
and the common multiplier ∆  is taken out. It gives 
the inequality 

11 1 1 11 12 1
1

21 2 2 21 22 2

∆
f b f b f b

b
f b f b f b

  
  + + +  
  

 

1 12 1 1
2 11 22

2 22 2 2

( ) 0
f b f b

b b b
f b f b

 
+ − + ≡/

 
.  (81) 

As ( ) 0x∆ = ∆ ≠  by definition, the inequality 

(81) is equivalent to the condition (10) in view of 
the designation (9). Necessity of the theorem 1 
conditions is proved. Sufficiency of its condition 
follows from the resulted expressions also. The 
theorem 1 is proved. 
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